求x^n⼀n!极限,n趋近于正无穷

2025-06-22 07:03:08
推荐回答(1个)
回答1:

先考虑x>0,
0<limx^n/n!<limx^n/n^n=lim(x/n)^n=0,
再考虑x<0,
当n=2k+1(奇数),0= lim(x/n)^n <limx^n/n!<0,
当n=2k(偶数),0<limx^n/n!<limx^n/n^n=lim(x/n)^n=0
由两边夹原理知:limx^n/n!=0,
x=0时就交给小学生解决吧!
专家 使用洛必达法则,洛必达同志不同意!o(∩_∩)o 哈哈!