(1)证明:由题意,2bn+1=bn+1,
∴2(bn+1)=bn+1+1
∵a1=2b1+1=1,∴b1=0,∴b1+1=1≠0
∴数列{bn+1}为首项是1,公比为2的等比数列;
(2)解:由(1)知,bn+1=2n-1,∴an=2bn+1=2n-1
∴cn=
=2n
an?an+1
-1
2n?1
1
2n+1?1
∴Tn=(1-
)+(1 3
-1 3
)+…+(1 7
-1
2n?1
)=1-1
2n+1?1
1
2n+1?1
∵Tn>
,∴2n+1>2013,∴n≥102011 2012
∴使Tn>
成立的最小的n值为10.2011 2012