一条高数题,怎么求他的通解?

2025-05-20 10:26:58
推荐回答(2个)
回答1:

解:∵齐次方程y"-3y'+2y=0的特征方程是r^2-3r+2=0,则r1=1,r2=2
∴此齐次方程的通解是y=C1e^x+C2e^(2x) (C1,C2是任意常数)
∵设原方程的解为y=(Ax+B)e^(3x),则代入原方程化简得
(2Ax+3A+2B)e^(3x)=x^(3x)
==>2A=1,3A+2B=0
==>A=1/2,B=-3/4
∴y=(x/2-3/4)e^(3x)
故原方程的通解是y=C1e^x+C2e^(2x)+(x/2-3/4)e^(3x)。

回答2:

实在是不懂