2cos2B-8cosB+5=0 → 2(2cosB^2-1)-8cosB+5=0 → 设t=cosB 则 原方程化为 4t^2-8t+3=0 → t=1/2 或3/2(舍) 即cosB=1/2 → B=60°a·b=|a|*|b|=3*5*cosQ=-9 → cosQ=-3/5 sinQ=4/5sin(B+Q)=sinBcosQ+cosBsinQ=√3/2*(-3/5)+1/2*4/5=(4-3√3)/10
nfgnhgm