高中数学求范围?高手请进

2025-06-22 07:51:49
推荐回答(5个)
回答1:

等等。。f(a^2-a-1)>-f(4a-5)因奇函数故-f(4a-5)=f(5-4a)
减函数则有 5-4a>a^2-a-1...①
-1 = -1=<5-4a<=1...③
由①②③即可解得a的取值范围。

回答2:

由定义域限制有
-1<=a^2-a-1<=1 ----(1)
-1<=4a-5<=1 ----(2)
然后f(a^2-a-1)+f(4a-5)>0
f(x)是奇函数
故f(a^2-a-1)>f(-4a+5)
f(x)减函数,故a^2-a-1<-4a+5 ----(3)

解不等式组(1)(2)(3)即可,自己算一算吧

回答3:

定义域
-1<=a^2-a-1<=1
-1<=a^2-a-1,a^2-a>=0,a<=0,a>=1
a^2-a-1<=1,a^2-a-2<=0,-1<=a<=2
所以-1<=a<=0,1<=a<=2

-1<=4a-5<=1
4<=4a<=6
1<=a<=3/2

所以1<=a<=3/2

f(a^2-a-1)+f(4a-5)>0
f(a^2-a-1)>-f(4a-5)
奇函数
-f(4a-5)=f[-(4a-5)]=f(5-4a)
f(a^2-a-1)>f(5-4a)
减函数
a^2-a-1<5-4a
a^2+3a-6<0
(-3-√33)/2
综上
1<=a<(-3+√33)/2

回答4:

f(x)是定义在[-1,1]上的减函数 那么f(x)=-X
f(a^2-a-1)+f(4a-5)=-(a^2-a-1)+4a-5=(a-1)(a+4)<0
解得 -4

回答5:

f(a^2-a-1)+f(4a-5)>0

-1≤a^2-a-1≤1

-1≤4a-5≤1

几种情况
①a^2-a-1<0 4a-5<0
②a^2-a-1>0 4a-5<0 且|a^2-a-1|<|4a-5|
③a^2-a-1<0 4a-5>0 且|a^2-a-1|>|4a-5|