先做个例子,比如怎么解决二面角问题
二面角类问题,找二面角的时候,估计百分之八九十都是先找一个面的垂线,再过垂足或与另外一个面的交点向交线做垂线,再连接。根据三垂线定理就可以证明那两条线的夹角就是二面角了。
说的你可能有点迷糊(我已经迷糊了),给你个题,你看看这个题,应该就明白了http://zhidao.baidu.com/question/81069024.html
这个题我没解出来,但是找到二面角了。
记住,找二面角就是找一个面的垂线
看完这个估计以后你做有关二面角的问题就比较自如了,只要也可以达到85%,先找有没有已知的垂线,如果没有,再想办法做垂线,然后就是三垂线定理
做空间几何,首先是定义,一定要熟悉,只有这样,你才能应用自如,我们老师跟我们说过一句话,看到求证想判定,看到结论想性质,意思就是如果求证线面垂直,面面垂直一类的问题,就去想判定定理,判定定理是怎么说的,就根据判定定理需要的条件入手,去解决问题,这样你就会有一定的思路,解决问题也会更加容易。而看见结论想性质,就是说,如果题目已经说了面面垂直一类的结论,那么就要去想面面垂直的性质,垂直于交线就垂直于面,往往利用性质就很容易解题了。你一定要把书上的定义记住了,再找几个类型题,做一做,你就会找到感觉了
还有一点,比如你遇到二面角的问题,根据上面说的方法,你找不到二面角,一般情况下(我说的是一般情况下,也有一定的可能是不需要垂线的,但是我还没见过)不要去想其他的方法,就是去找垂线
你可能不信,但是只要你做题的时候坚持一两次,你就会坚信这个观点。
我也只能说这些了,其实我的成绩也不算太好,不能帮你太多,平时要注意与你们班上学习好的同学交流,问问他们怎么学,这对你很有帮助
哦,对了,还有一种方法,就是找不到垂线的时候,使用空间向量,也比较简洁
把定理记住是一定的,并且在做题的过程中要善于总结各个定理的使用及配合,比如求二面角,首先找两面的交线,然后找垂直这个直线的其它相关直线,一般求二面角的题会跟三垂线定理联系在一起,再比如证平行的问题,一般在一些相似三角形里,如果题目没有,就去构造。还有建议把空间向量学一学,如果实在没思路的话,也可以利用空间向量解决
空间几何是比较难学 不过再高二的时候会教另一种简单方法 建坐标轴 那时候没人会用那种方法了 我也是一个没有空间想象力的人
把 点到面 点到点 面到面 的距离 公式
线与面 面与面 线与线 夹角 公式 还有就是 勾股定理 掌握 建坐标 以及 简单 的几何关系 了解 就没问题了 关键 是写坐标 和 计算 要准确 着章 是 高中 最简单的一章