(1)由已知得
解得a2=2.
a1+a2+a3=7
=3a2
(a1+3)+(a3+4) 2
设数列{an}的公比为q,由a2=2,可得a1=
,a3=2q.2 q
又S3=7,可知
+2+2q=7,即2q2-5q+2=0,2 q
解得q1=2,q2=
.由题意得q>1,1 2
∴q=2,
∴a1=1,
∴an=2n-1.
(2)由(1)知,bn=2n-1log222n=n?2n,
故Tn=(1?2+2?22+3?23+…+n?2n),
2Tn=1?22+2?23+3?24…+(n-1)?2n+n?2n+1),
两式相减,可得:-Tn=(2+22+23+…+2n-n?2n+1)
=
-n?2n+12(1?2n) 1?2
=2n+1-2--n?2n+1,
∴Tn=(n-1)×2n+1+2.