若sin(a+B)=1⼀2,sin(a-B)=1⼀3,则tana⼀tanB=?

2025-06-22 00:38:41
推荐回答(2个)
回答1:

sinacosb+cosasinb=1/2
sinacosb-cosasinb=1/3
所以sinacosb=5/12
cosasinb=1/12
相除
(sina/cosa)*(cosb/sinb)=5
(sina/cosa)/(sinb/cosb)=5
tana/tanb=5

回答2:

sin(a+b)=sina*cosb+sinb*cosa=1/2
sin(a-b)=sina*cosb-cosasinb=1/3
sina*cosb=5/12 sinb*cosa=1/12
tana/tanb=sina/cosa*sinb/cosb=sina*cosb/cosa*sinb=5