这个应该能回答你。(转)
黑洞五大误传
文:黄永明
黑洞是宇宙中最不可思议的天体。爱因斯坦提出广义相对论之后的第二年,即1960年,科学家们才理解并接受了黑洞的存在。今天,黑洞已经广为人知,这个曾经仅仅存在于物理理论中的怪物已经被人们泛化到了其他许多层面,并赋予了它新的含义。
与此同时黑洞也早已成为科幻小说、科幻影视中频频出现的神奇天体。这些科幻作品让许多人认识了“黑洞”这个怪物,但同时也带来了种种对黑洞的误解。这里我们总结出五种最为常见的对黑洞性质的误传,也相应给出真实的情形。请看一看,你的脑海中是否也存在这些以讹传讹的误解,是否能分清黑洞的科学与科幻?
误传1:黑洞是时空旅行的通道
宇航员在执行任务是不幸遭遇了黑洞,当他们发现时已经无力回天——他们无可避免地掉进了黑洞!但也许这不见得就是一场灾难——在一些科幻作品中,黑洞被描述为通向宇宙其他地点或者其他宇宙的大门,宇航员掉入黑洞后会幸运地到达宇宙的其他地方乃至另外一个宇宙!有一部电影的宣传语就是:“一次从万物终结之处开始的旅行。”
但不幸的是,终结就是终结,这里不会再有新的旅行。很多黑洞仅仅是大质量恒星的演化终点。这些恒星的质量在太阳的10倍以上。在它们的一生中,总有两种不同的力量在相互抗衡:自身的引力向内施压,而内部热核聚变反应所产生的能量则向外施压。当这两种力量不分伯仲的时候,恒星就处于较为稳定的状态。但恒星内部用于热核聚变的的燃料终有一天要用尽,当这一天来临时,力量的悬殊就会显现出来。一旦引力占了上风,恒星就无可避免地向内坍缩,并且引力的作用会越来越剧烈。随着恒星的物质变得越来越致密,它的逃逸速度也越来越大。当恒心致密到逃逸速度大于光速时,一个黑洞就形成了。此时,即便是宇宙间运动速度最快的物质——光——也无法逃离黑洞了。
另外,宇宙中还有一些质量非常巨大的黑洞,他们位于星系和类星体的中心。比如我们银河系的中心就有一颗超大质量黑洞,它的质量是太阳的400万倍。这些黑洞的形成过程还不完全清晰。但不论是恒星质量黑洞,还是超大质量黑洞,从天文学角度来看,都与时空之门无关,它们不过是天体的一种极端存在形式。
在时空旅行的幻想中,还常常出现“虫洞”。虫洞被认为是有两个黑洞经“爱因斯坦-罗森桥”连接而成的。1935年爱因斯坦和罗森提出了爱因斯坦-罗森桥,但这一理论并没有提及桥两端所连接的时空具有何种关系。于是在科幻中,宇航员从一个黑洞进入另一个黑洞进入,会从另一个黑洞出去,这样就发生了时空旅行。但真实的情形是,到目前为止,天文学家在实际的观测中已经发现了不少黑洞的存在迹象,却从未有任何证据证明虫洞的存在。虫洞目前仅仅是数学上的结果,可能永远也只是数学上的结果。
此外还有另一种更为诡异的说法:黑洞可能与白洞相连,当一个人从黑洞进入后,可能由白洞出来。事实上,白洞也仅仅是数学上与黑洞相对的结果,在自然界中是否真的存在也很值得怀疑。而白洞与黑洞相连的说法就显得更加不可能了。退一万步说,假设真的有黑洞与白洞相连,那么当一个人投身黑洞,那么早在他从白洞“钻”出来之前,他已经在黑洞巨大的潮汐里的作用下被撕得粉碎了!
误传2:黑洞会把所有的天体都“吸”进去
连光都无法逃离黑洞的魔掌,更不用说其他物质了。不管是恒星还是行星,宇宙中的一切其他的天体最终都会被黑洞吸进去,我们银河系中心的超大质量黑洞最终会把整个星系都吃掉——这只是个时间问题,对吗?
不是这样的。事实上,黑洞不会“吸”任何东西。黑洞的引力与宇宙中其他天体的引力在性质上没有差别,对于远处的物体来说,黑洞的引力并不能把它们怎么样。假如我们的太阳系突然演化成了一个黑洞,那么这个黑洞并不会把太阳系中的大小行星统统吃掉。我们的地球仍会在现在的轨道上运行下去(严格说来,从长时间来看可能会有微小变化),唯一明显的变化就是天气会变得异常寒冷——因为缺少了阳光的温暖。
黑洞就像是水中的旋涡,只有当你离它太近的时候,它才会对你构成威胁。黑洞有一个“史瓦西半径”,只有当你越过了这个半径,你才会无法自拔地被黑洞“吸”进去。史瓦西半径可以从逃逸速度的方程中计算得到。在史瓦西半径以内,光都无法逃逸。我们的太阳的半径大约是70万千米。当太阳突然变成黑洞,太阳系中的大小行星全都会处于“安全线”之外。当然,我们的太阳是不会变成黑洞的,因为它的质量太小了。太阳最终会演化为一颗白矮星。那些经历一系列演化后中心质量在太阳的2.5倍以上的天体,才有可能演化为黑洞。
那么,为什么在史瓦西半径以内,黑洞的引力会极为强大呢?在数学上,一个物体所产生的引力可以被看作是集中于一点的。对于球体来说,这个点位于球心。当你站在地球表面,你距离球心是最近的,因而你感受到了地球所能带给你的最大的引力。假设某一天,地球开始向中心坍缩,那么站在地球表面的你就会随之移向地球的中心,也就是说你里地球中心越来越近,这时你就会感到自己越来越重,因为你受到的引力越来越大。但假如你没有随着地面移动,而是悬在原地不动,那么你便不会感到引力有何变化。黑洞是一种极端的情况,理论上,天体演化为黑洞时,原先的物质会坍缩到体积为零、密度为无穷大,其他物质能够非常接近原先天体中心,因而受到极为强大的引力作用。
误传3:黑洞的密度无穷大
在广义相对论中,黑洞中存在一个“奇点”,这个奇点的体积为零、密度为无穷大。任何物体跌入黑洞后,最终都会粉身碎骨地撞到奇点上。然而,奇点只是计算得来的产物,在真实的物理世界中,密度为无穷大的状态不应该出现。从量子辐射的角度来考虑,假如一个物体的密度为无穷大,那么它是无法长时间存在的,它会在眨眼间就消失。
实际上,从史瓦西半径的计算公式中很容易看出,黑洞的史瓦西半径的长度与黑洞的质量成正比。史瓦西半径给出了黑洞“视界”的大小,人们一般将视界之内的体积看作黑洞的体积。假如一个黑洞的质量是另一个的10倍。那么,前者的史瓦西半径的长度就是后者的10倍。进而可知,前者的体积是后者的1000倍。这时再计算密度就会发现,前者的密度是后者的1/100。由此可见,当黑洞的质量增加时,它的密度会迅速减小。
假如一个黑洞的质量与我们的太阳相当,那么它的密度就是100亿顿/立方厘米,这样大的密度简直难以想象。而对于星系中心的超大质量黑洞而言,它们的密度则可能比水还要小。有人计算,宇宙质量的黑洞的密度会小到10的-23次方克/立方米。
另一个有趣的现象是,超大质量黑洞在视界处的潮汐力可能并不大。一名宇航员如果飞向一个恒星质量的黑洞,那么他早在到达视界之前就会被撕裂;但如果他飞向一个超大质量黑洞,那么他有可能在越过视界后仍安然无恙。
误传4:实验室中产生的量子黑洞可能吃掉整个地球
在科学家业已发现的四种基本力(强力、电磁力、弱力、和引力)中,引力是最弱的力。目前有一些“怪异”的理论来解释这种现象。比如有理论认为,引力并不是本质上就很弱,但它之所以表现得弱,是因为它的力量传播到了一些看不到的维度中。在三维的世界中,当你把两件物体的距离拉近一半,那么它们的间的引力将变为原先的四倍;但如果在九维的情况下,当你把两件物体的距离拉近一半,它们间的引力将变为原先的256倍!这种理论意味着,假如我们的宇宙中存在一些看不到的小维度,那么在极小的距离上,引力可能会成为一种很强的力。再进一步,这可能意味着,在科学家的实验室中,机器可能会拥有制造量子黑洞的能量。
这种担心其实是多余的。每天,来自宇宙空间的高能粒子都在撞击地球。据计算,由此撞击出的小黑洞每天可能有100个。如果这些小黑洞能吃掉地球的话,那么地球早就不存在了。可是,这些小黑洞为什么无法对地球的安全造成威胁呢?
1970年,史蒂芬·霍金提出,黑洞是有辐射的,它们会有“蒸发”。黑洞的温度与它的质量成反比。一个黑洞的质量越小,它的温度就越高,“蒸发”过程也越快。实验室中制造出来的黑洞(如果能造出来的话),它们的温度可能就已经“蒸发”殆尽了。如果想让这样的黑洞存活下来,那么就必须使它周围的温度比它的温度还要高。要知道,即便是在太阳的中心,也是远远达不到这种温度的。
然而幻想中会有所不同。假设你有某种方法使量子黑洞周围的温度高于黑洞,那么黑洞就会慢慢长大。随着质量的增加,黑洞会逐渐冷却。待到黑洞冷却到一定程度,它会进入一种稳定的状态,最终你可以把它从原先的超高温环境中取出,为你所用。当然,也有一些科幻作家已经指出,假如这样的黑洞被不小心掉在了地上,那么它会一路吃到地心,最后整个地球都会完蛋。
下面回到现实。现在,欧洲核子中心正在建设“大型强子对撞机”,该对撞机最早有可能在2007年投入运行。该对撞机能够令粒子在极大的能量中碰撞,甚至模拟出宇宙大爆炸刚刚发生之后宇宙中的环境。该对撞机位于法国和瑞士的接壤之处,但请放心,即便它不小心制造出了黑洞,黑洞也不会吃掉法国或瑞士。
误传5:在掉进黑洞的过程中,我会看到宇宙命运在我眼前闪过
假如你乘着飞船向黑洞撞去,远处有一个你的喷够目送你,那么你的这个朋友将永远也看不到你越过视界的那一刻。因为在视界附近,由于引力的作用,时间的流动变得很慢,在你接近视界的过程中,你的飞船发出的光线需要越来越长的时间才能到达那位朋友的眼睛。在视界处,这个时长变为无穷大,你发出的光线永远也到达不了朋友的眼睛了。
那么,这是否意味着你需要无穷大的时间才会撞到奇点上,而你可以看到宇宙的命运在你眼前闪过呢?不是的。对你来说,你也许需要花费一些时间到达视界,但只要越过了视界,那么须臾之间你就会到达“万物的终结之处”。在你看来,时间并没有变慢。你的朋友所看到的只是某种假象,也许你早已撞上了奇点,但你的朋友所看到的景象还是你正在接近黑洞。
另一方面,实际上,在你不断接近时视界的过程中,你的飞船所发出的光线的波长会越来越长。对你的朋友来说,也许起初还可以看到你的飞船在光学波段的影象,然后光学波段看不到了,只好在红外波段看,后来红外波段也看不到了,只能在无线波段看,到了最后,光线的波长被红移到非常大的程度,你的朋友用什么仪器都看不到你了。
在跌入黑洞的过程中,你所能看到的仅仅是被扭曲了的宇宙景象,因为黑洞造成的时空弯曲可能会使外部传来的光线发生扭曲。即便是进入到视界以内,你仍然可以看到(当然,如果你还活着的话)外面的星光。因为光线可以进入黑洞,只是出不去。也许在你看来,星空会有些扭曲,但决不会看到宇宙的命运的“快进”版本。
但是,假如我们可以用某种方法抵消黑洞的引力,使你的飞船恰好停留在视界处,则你将会看到宇宙在你眼前终了一生。当然,这仅仅是一种不可能的假设
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!
“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。
不能,当吸进的物体超过某一限度时,它会转化为白洞,向外排斥物质。
不是的.直到它的引力不能在吸引物体为止.