f(2x)=x,f(2x+1)=-x.就是一个双射。
既是单射又是满射的映射称为双射,亦称“一一映射”。双射(Bijection)的原理是一组关系,在判别某一种想法在应用能否双向的找到某一唯一对应的事物,理论上通常要判断这种想法是否满足双射的关系。
因为具体的实施这一想法的途径我们是并不知道的,所以需要抽象出他们的关系,找到这个双射,如果找不到,并且验证这个双射不存在,那么想法是不可能实现的。
设f是从集合A到集合B的映射,若f(A)=B,即B中任一元素b都是A中某元素的像,则称f为A到B上的满射;若对A中任意两个不同元素a1不等于a2,它们的像f1不等于f2,则称f为A到B的单射;
若映射f既是单射,又是满射,则称映射f为A到B的“双射”(或“一一映射”)。 函数为双射当且仅当每个可能的像有且仅有一个变量与之对应。
存在
可以构造这样的双射:
0对应0
奇数2k-1对应-k
偶数2k对应k
这就形成了自然数集到整数集的双射
双射只要满足一一映射就可以,比如从自然数到整数集映射f:f(2x)=x,f(2x+1)=-x.就是一个双射.