(Ⅰ)由题a1+a2+…+an-1-an=-1…①
∴a1+a2+…+an-an+1=-1…②
由①-②得:an+1-2an=0,即
=2(n≥2)…(3分)an+1 an
当n=2时,a1-a2=-1,
∵a1=1,
∴a2=2,
=2,a2 a1
所以,数列{an}是首项为1,公比为2的等比数列,
故an=2n-1(n∈N*)…(5分)
(Ⅱ)∵an=2n-1,
∴dn=1+loga
=1+2nloga2,
+
a
a
5
∵dn+1-dn=2loga2,
∴{dn}是以d1=1+2loga2为首项,以2loga2为公差的等差数列,…(8分)
∴
=S2n Sn
2n(1+2loga2)+
×(2loga2)2n(2n?1) 2 n(1+2loga2)+
×(2loga2)n(n?1) 2
=
=λ?(λ-4)nloga2+(λ-2)(1+loga2)=0…(10分)2+(4n+2)loga2 1+(n+1)loga2
∵
恒为一个与n无关的常数λ,S2n Sn
∴
,
(λ?4)loga2=0 (λ?2)(1+loga2)=0
解之得:λ=4,a=
…(12分)1 2