(Ⅰ)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值;(Ⅱ)设a 1 ,b 1 (k=1,2…,n

2025-05-12 18:16:03
推荐回答(1个)
回答1:

(I)f(x)的定义域为(0,+∞),
令f′(x)=
1
x
-1=0,解得x=1,
当0<x<1时,f′(x)>0,所以f(x)在(0,1)上是增函数;
当x>1时,f′(x)<0,所以f(x)在(1,+∞)上是减函数;
故函数f(x)在x=1处取得最大值f(1)=0;

(II)(1)由(I)知,当x∈(0,+∞)时,有f(x)≤f(1)=0,即lnx≤x-1,
∵a k ,b k (k=1,2…,n)均为正数,从而有lna k ≤a k -1,
得b k lna k ≤a k b k -b k (k=1,2…,n),
求和得
ln b 1 a 1
+
ln b 2 a 2
+
ln b 3 a 3
+…+
ln b n a n
≤a 1 b 1 +a 2 b 2 +…+a n b n -(b 1 +b 2 +…+b n
∵a 1 b 1 +a 2 b 2 +…a n b n ≤b 1 +b 2 +…b n
ln b 1 a 1
+
ln b 2 a 2
+
ln b 3 a 3
+…+
ln b n a n
≤0,即ln ( a 1 b 1 a 2 b 2 …  a n b n ) ≤0,
a 1 b 1 a 2 b 2 a n b n ≤1;

(2)先证
1
n
b 1 b 1 b 2 b 2 b n b n
令a k =
1
n b k
(k=1,2…,n),则a 1 b 1 +a 2 b 2 +…+a n b n =1=b 1 +b 2 +…b n
于是由(1)得 (
1
n b 1
)
b 1
(
1
n b 2
)
b 2
(
1
n b n
)
b n
≤1,即
1
  b 1 b 1 b 2 b 2 b n b n
≤n b 1 +b 2 +…b n =n,
1
n
b 1 b 1 b 2 b 2 b n b n
②再证 b 1 b 1 b 2 b 2 b n b n ≤b 1 2 +b 2 2 +…+b n 2
记s=b 1 2 +b 2 2 +…+b n 2 .令a k =
b k
s
(k=1,2…,n),
则a 1 b 1 +a 2 b 2 +…+a n b n =
1
s
(b 1 2 +b 2 2 +…+b n 2 )=1=b 1 +b 2 +…b n
于是由(1)得 (
1
s b 1
)
b 1
(
1
s b 2
)
b 2
(
1
s b n
)
b n
≤1,
b 1 b 1 b 2 b 2 b n b n ≤s b 1 +b 2 +…b n =s,
b 1 b 1 b 2 b 2 b n b n ≤b 1 2 +b 2 2 +…+b n 2
综合①②,(2)得证.