基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。(a²+b²)/2≥(a+b)²/4≥ab≥(1/a+1/b)²/4
均值不等式或者叫做基本不等式
解,x^2>0,4-x^2>0 x^2*(4-x^2)≤(x^2+(4-x^2))^2/4=4则x√(4-x^2)=√x^2(4-x^2)≤√4=2