随机事件的运算

2025-05-20 07:55:01
推荐回答(1个)
回答1:

(1)交换律:A∪B=B∪A、AB=BA
(2)结合律:( A∪B )∪C=A∪( B∪C )
(3)分配律:A∪( BC )=( A∪B )( A∪C )
A( B∪C )=( AB )∪( AC )
(4)摩根律:A B=A∪B、A ∪ B=A B
在随机事件中,有许多事件,而这些事件之中又有联系,分析事件之间的关系,可以帮助我们更加深刻地认识随机事件;给出的事件的运算及运算规律,有助于我们讨论复杂事件。
既然事件可用集合来表示,那么事件的关系和运算自然应当按照集合论中集合之间的关系和集合的运算来处理。下面给出这些关系 和运算在概率论中的提法,并根据“事件发生”的含义,给它们的概率意义。 设A,B为两个事件,若A发生必然导致B发生,则称事件B包含事件A,或称事件A包含在事件B中,记作A⊂B。
显然有:∮⊂A⊂Ω。 称事件“A、B中至少有一个发生”为事件A和事件B的和事件,也称A与B的并,记作A∪B或A+B,A∪B发生意味着:或事件A发生,或事件B发生,或都发生。显然有:
①A⊂A∪B,B⊂A∪B;
②若A⊂B,A∪B=B 称事件“A、B同时发生”为事件A与事件B的积事件,也称A与B的交,记作A∩B,简记为AB。事件AB发生意味着事件A发生且事件B也发生,也就是说A,B都发生。
显然有:
①AB⊂A,AB⊂B
②若A⊂B,则AB=A 称事件“A发生而B不发生”为事件A与事件B的差事件,记作A—B,
显然有:
①A—B⊂A
②若A⊂B,则A—B=∮
注意在定义事件差的运算时,并未要求一定有B⊂A,也就是说,没有包含关系B⊂A,照样可作差运算A—B。互斥事件
若AB为不可能事件,则称事件A与事件B互斥。 若AB为不可能事件,AB为1,则称事件A与事件B互为对立事件。