侧棱SD⊥底面ABCD这一条件多余。
证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH
因为FG平行于CD,且CD平行于AE(已知+正方形性质)
所以FG平行于AE
又因为F,E为中点,所以FG为中位线,即FG=(1/2)DC,又因为AE=(1/2)AB=(1/2)DC
所以FG=AE
综上,FG平行且等于AE
所以四边形FGAE为平行四边形
所以FE平行于AG
因为AG在平面SAD内,所以EF平行于平面SAD(线面平行的定义)
找CD中点G,连接GE,GF,很容易可以得出GF‖SD,GE‖AD,也就是平面GEF‖平面SAD.也就证明了EF‖平面SAD