如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于

2025-05-16 04:01:07
推荐回答(1个)
回答1:

(1)证明:△ABD为等边三角形且G为AD的中点,
∴BG⊥AD,
又平面PAD⊥平面ABCD,
∴BG⊥平面PAD。
(2)证明:△PAD是等边三角形且G为AD的中点,
∴AD⊥PG,且AD⊥BG,PG∩BG=G,
∴AD⊥平面PBG,
平面PBG,
∴AD⊥PB。
(3)解:由AD⊥PB,AD∥BC,
∴BC⊥PB,
又BG⊥AD,AD∥BC,
∴BG⊥BC,
∴∠PBG为二面角A-BC-P的平面角,
在Rt△PBG中,PG=BG,∴∠PBG=45°。