解:(1)连结MC,
∵圆心M在x轴的负半轴上,∴AB⊥CD于点O,
∴
=BC
,∠OCB+∠OBC=90°,BD
∴∠OCB=∠PDC,
∵PC与⊙M相切于点C,∴PC⊥MC,
∴∠MCB+∠PCB=90°,
又∵MC=MB,∴∠MCB=∠OBC,∴∠PCB=∠PDC,
又∵∠P=∠P,∴△PCB∽△PDC;
(2)∵点C的坐标是(0,
),12 5
∴OD=OC=
,12 5
∵tan∠BAC=
=OC OA
,3 4
∴OA=
×4 3
=12 5
,16 5
∵AB是⊙M的直径,∴∠ACB=90°,
∴∠OCB+∠ACO=90°,而∠OAC+∠ACO=90°,
∴∠OAC=∠OCB,
又∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴
=OB OC
,OC OA
∴OB=
=(OC2
OA
)2×12 5
=5 16
,9 5
∴BD=BC=
=3,
OB2+OC2
设PC=x,BP=y,
由△PCB∽△PDC得:
=PC PD
=BC CD
,BP PC
即
=x 3+y
=3
24 5
,y x
解得:PC=x=
.40 13