(1)证明:∵
=kn+1,∴an+1 an
=a2=k+1,a2 a1
又∵a1=1,an+1an?1=anan?1+
(n∈N+,n≥2)
a
∴a3a1=a2a1+
,∴
a
=a2+1,a3 a2
∵
=2k+1,∴a2=2k.a3 a2
∴k+1=a2=2k,∴k=1.
(2)解:
=n+1,an=an+1 an
?an an?1
?…?an?1 an?2
?a1=n?(n-1)?…?2?1=n!a2 a1
(3)解:设数列{
}的前n项和为Sn,
anxn?1
(n?1)!
因为
=nxn?1,所以,当x=1时,Sn=
anxn?1
(n?1)!
,n(n+1) 2
当x≠1时,Sn=1+2x+3x2+…+nxn?1①
①?x得Sn=x+2x2+3x