已知数列{an}中,a1=1,an+1an?1=anan?1+a2n(n∈N+,n≥2),且an+1an=kn+1,(1)求证:k=1;(2)

2025-05-17 13:25:06
推荐回答(1个)
回答1:

(1)证明:∵

an+1
an
=kn+1,∴
a2
a1
a2=k+1

又∵a1=1,an+1an?1anan?1+
a
(n∈N+,n≥2)
a3a1a2a1+
a
,∴
a3
a2
a2+1

a3
a2
=2k+1
,∴a2=2k.
∴k+1=a2=2k,∴k=1.
(2)解:
an+1
an
=n+1
an
an
an?1
?
an?1
an?2
?…?
a2
a1
?a1
=n?(n-1)?…?2?1=n!
(3)解:设数列{
anxn?1
(n?1)!
}
的前n项和为Sn
因为
anxn?1
(n?1)!
=nxn?1
,所以,当x=1时,Sn
n(n+1)
2

当x≠1时,Sn=1+2x+3x2+…+nxn?1
①?x得Sn=x+2x2+3x