解:如图所示:
(1)BG=DE+DF,
连接AD,
∵DE⊥AB于E,DF⊥AC于F,AB=AC,
∴S△ABC=S△ABD+S△ACD=
AB?DE+1 2
AC?DF=1 2
AC?(DE+DF),1 2
∵BG⊥AC,
∴S△ABC=
AC?BG,1 2
∴BG=DE+DF.
故答案为:BG=DE+DF;
(2)由(1)可知,S△ADC=
AC?DF,S△ABD=1 2
AB?DE1 2
∴S△ABC=
AC?DF+1 2
AB?DE1 2
S△ABC还可以表示为
AC?BG.1 2
故答案为:
AC?DF,1 2
AB?DE,1 2
AC?DF+1 2
AB?DE,1 2
AC?BG1 2
拓展结论仍然成立,即BG=DE+DF.