定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1<x2时有f(x1)<f(x2),那么f(x)在(a,b)上为增函数

2025-05-23 19:44:56
推荐回答(5个)
回答1:

在一个区间上是增函数,说的是对这个区间上“任意”的a>b,都有f(a)>f(b)
A只是说存在组这样的a b,当然不行;B是说有无穷多对,但无穷多也不能代表任意,所以也不对

至于C。f(x)=1/x在(0,正无穷),(负无穷,0)上都是减函数,但是f在这两个区间的并集上就不是减函数。比如1>-1,f(1)>f(-1)

D当然是对的。若x1>=x2,则根据f是增函数知道f(x1)>=f(x2),矛盾!所以x1

回答2:

首先单调性要求区间内任意两点的函数值关系,不是存在,是任意
单调增等价于定义域内,任意2点x1单调减等价于定义域内,任意2点x1f(x2)
故A错,因为存在2点
x1B错,因为有无穷多对x1,x2∈(a,b),使得x10时y=x-2,x<=0时y=x,这样也有无穷多对x1,x2∈(a,b),使得x1f(1)
C错,譬如在A是[0,1],B[2,3] 定义这样的一个函数y,在A区间,y=-x+6单调减,在B区间,y=-x+100,这样的话在A∪B上,有f(1)f(x2),故不是减函数
D正确,因为单调性函数,函数值大小关系与自变量大小关系是固定相同(单调增)或者固定相反的(单调减)

回答3:

A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1错误在于“存在”两字,应该是“任意”,如:
y=x的平方,在区间(-4,1)上,存在x1=o,x2=1,满足x1B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),使得x1
同理,无穷也不对 ,无穷不代表任意。

C.若f(x)在区间A上为减函数,在区间B上也为减函数,则f(x)在A∪B上也为减函数.
不能随便并,如y=x分之一,在(-无穷,0)和(0,+无穷)皆为减函数,但是不能说在(-无穷,+无穷)上为减函数,因为取x1=-1,x2=1,有x1

回答4:

A,你的定义就错了,不是"若存在"而是"对任意"
要保证所有都成立才是,或者加一条单调函数

B,也同样,无穷多不代表所有

C,不能保证A,B中间的空间,比如sin的[0,pi/4][3pi/4,pi]这两个区间都是增,但是和起来不是
要保证在所有定义域都满足条件

回答5:

昏的了
注意是存在X1,X2
不是任意的X1,X2

这就是关键
想画图给你看的
有些麻烦呢
就算了
你自己想想就出来了啊

B选项也是一样

C关键是AB这两个区间是否有交集
没有交集,就不能那么肯定了

谢谢

最后
得出结论:楼主数学真的很烂