(1)①∵BO平分∠ABC,
∴∠OBC=
∠ABC=25°;1 2
②∵OB、OC分别为∠ABC,∠ACB的平分线,
∴∠ABC=2∠OBC,∠ACB=2∠OCB.
∵∠A=180°-(∠ABC+∠ACB),
∴∠A=180°-2(∠OBC+∠OCB),
∴∠A=180°-2(180°-∠BOC),
∴∠A=-180°+2∠BOC,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+
∠A.1 2
(2)∵BP、CP分别是∠ABC与∠ACB的外角平分线,
∴∠CBP=
∠CBM,∠BCP=1 2
∠BCN,1 2
∴∠CBP+∠BCP
=
∠CBM+1 2
∠BCN1 2
=
(∠CBM+∠BCN)1 2
=
(∠A+∠ACB+∠A+∠ABC)1 2
=
(180°+∠A),1 2
∴∠BPC=180°-(∠CBP+∠BCP)
=180°-
(180°+∠A)1 2
=90°-
∠A1 2
=90°-
x°.1 2