如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E.F是OC上的另一点,连接DF,ED.求证DF=E

2025-05-22 19:10:56
推荐回答(2个)
回答1:

∵OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E
∴AP等于BP
∴∠ADP=∠BEP
∴三角形AOP≌三角形BOP〈AAS〉
∴∠APO=∠BPO〈全等三角形,对应角相等〉
∴三角形DPF≌三角形BPF〈SAS〉
∴DF=EF〈全等三角形,对应边相等〉

回答2:

∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E
∴在△ODP与△OEP中
{∠ODP=∠OEP ∠DOP=∠EOP OP=OP
∴△ODP≌△OEP
∴DP=EP,∠OPD=∠OPE
∴∠DPF=∠EPF(∠OPD=∠OPE余角相等)
∴在△PDF与△PEF中
{PE=PD ∠EPF=∠DPF PF=PF
∴△PDF≌△PEF
∴DF=EF
这个是八年级上册P23页T5答案