(1)依题意,BE=EC=
BC=AB=CD…(1分),1 2
∴△ABE是正三角形,∠AEB=60°…(2分),
又∵△CDE中,∠CED=∠CDE=
(180°-∠ECD)=30°…(3分)1 2
∴∠AED=180°-∠CED-∠AEB=90°,即DE⊥AE…(4分),
∵AA1⊥平面ABCD,DE?平面ABCD,∴DE⊥AA1.…(5分),
∵AA1∩AE=A,∴DE⊥平面A1AE…(6分),
∵DE?平面A1DE,∴平面A1AE⊥平面A1DE.…(7分).
(2)取BB1的中点F,连接EF、AF,连接B1C,…(8分)
∵△BB1C中,EF是中位线,∴EF∥B1C
∵A1B1∥AB∥CD,A1B1=AB=CD,
∴四边形ABCD是平行四边形,可得B1C∥A1D
∴EF∥A1D…(9分),
可得∠AEF(或其补角)是异面直线AE与A1D所成的角…(10分).
∵△CDE中,DE=
CD=
3
=A1E=
3
,AE=AB=1
A1A2+AE2
∴A1A=
,由此可得BF=
2
,AF=EF=
2
2
=
+11 2