已知x,y,z∈R+,x+y+z=3.(1)求1x+1y+1z的最小值(2)证明:3≤x2+y2+z2<9

2025-05-18 22:56:25
推荐回答(1个)
回答1:

(1)解:∵x,y,z∈R+,x+y+z=3.

1
x
+
1
y
+
1
z
=
1
3
(x+y+z)(
1
x
+
1
y
+
1
z
)

=
1
3
(3+
y
x
+
x
z
+
y
x
+
y
z
+
z
x
+
z
y
)
1
3
(3+2
y
x
?
x
y
+2
x
z
?
z
x
+2
y
z
?
z
y
)
=3,
当且仅当x=y=z=1时取等号,
1
x
+
1
y
+
1
z
的最小值是3.
(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,
∴2(x2+y2+z2)≥2xy+2xz+2yz,
∴3(x2+y2+z2)≥(x+y+z)2=32
∴x2+y2+z2≥3;
又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.
综上可得:3≤x2+y2+z2<9.