(1)解:∵x,y,z∈R+,x+y+z=3.
∴
+1 x
+1 y
=1 z
(x+y+z)(1 3
+1 x
+1 y
)1 z
=
(3+1 3
+y x
+x z
+y x
+y z
+z x
)≥z y
(3+21 3
+2
?y x
x y
+2
?x z
z x
)=3,
?y z
z y
当且仅当x=y=z=1时取等号,
∴
+1 x
+1 y
的最小值是3.1 z
(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,
∴2(x2+y2+z2)≥2xy+2xz+2yz,
∴3(x2+y2+z2)≥(x+y+z)2=32,
∴x2+y2+z2≥3;
又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.
综上可得:3≤x2+y2+z2<9.