一道大学高数题,求详细解答

2025-05-22 14:26:40
推荐回答(2个)
回答1:

回答2:

f'(x)=2x
∫(a,0) f(x)dx
=x*f(x)/(a,0) -∫(a,0) xdf(x)
=x*f(x)/(a,0) -∫(a,0) x*f'(x)dx
=a*f(a)-∫(a,0) x*2xdx
=a*f(a)-2/3 x^3/(a,0)
=a*f(a)-2/3 *a^3

其次有f(a)=a^2-∫(a,0)f(x)dx
=a^2-af(a)+2/3*a^3
得f(a)=(2/3*a^3+a^2)/(a+1)
所以∫(a,0)f(x)dx
=a*(2/3*a^3+a^2)/(a+1) -2/3*a^3
=(2/3 a^4+a^3 -2/3 a^4-2/3 a^3)/(a+1)
=1/3* a^3/(a+1)