(1).1=∫[-∞,+∞]f(x)dx
=∫[-2,+2]cx^2dx
=16c/3,
c=3/16.
(2).EX=∫[-2,+2]x*(3/16)x^2dx
=(3/16)∫[-2,+2]x^3dx
=0.
E(X^2)=∫[-2,+2]x^2*(3/16)x^2dx
=(3/16)∫[-2,+2]x^4dx
=(3/16)*(64/5)
=12/5.
DX=E(X^2)-(EX)^2=12/5.
(3).P{|X-E(X)|
=∫[-12/5,-2]0dx+∫[-2,2](3/16)x^2dx+∫[2,12/5]0dx
=1.