∫(0→π)√(1+cos2x)dx 求定积分

2025-05-19 22:18:03
推荐回答(2个)
回答1:

简单分析一下,答案如图所示

回答2:

解:∫<0,π>√(1+cos2x)dx=∫<0,π>√(2cos²x)dx (应用余弦倍角公式)
=√2∫<0,π>│cosx│dx
=√2(∫<0,π/2>│cosx│dx+∫<π/2,π>│cosx│dx)
=√2(∫<0,π/2>cosxdx-∫<π/2,π>cosxdx)
=√2[(sinx)│<0,π/2>-(sinx)│<π/2,π>]
=√2[(1-0)-(0-1)]
=2√2。