基本不等式求最值问题

2025-05-19 23:39:20
推荐回答(1个)
回答1:

由已知x,y是正实数,且x+y=1,则
x²/(x+2)+y²/(y+1)
=(x²-4+4)/(x+2)+(y²-1+1)/(y+1)
= (x-2)+(y-1)+4/(x+2)+1/(y+1)
= 4/(x+2)+1/(y+1)-2
=4/(x+2)+1/(2-x)-2
=(10-3x)/(4-x²)-2

f(x)=(10-3x)/(4-x²)
求导得
f'(x)=(-3x²+20x-12)/(4-x²)²
令f'(x)=0可得
x=2/3(或6舍)

(0,2/3)为单调减区间,(2/3,1)为单调增区间

当x=2/3时,f(x)取最小值
此时
x²/(x+2)+y²/(y+1)=f(x)-2也取得最小值
计算可得最小值=1/4