x+ y+ z=1,得(x+ y+ z)²=x²+ y²+ z²+ 2(xy+ yz+ xz)=1
又x²+ y²≥2xy,x² +z²≥2xz,y²+ z²≥2yz,
则x²+ y²+ z²≥xy+ yz+ xz
∴1≥3(xy+ yz+ xz) (x=y=z时取等)
故xy+ yz+ xz≤1/3
(1)(x-y)²+(y-z)²+(x-z)²>=0
2(x²+y²+z²)-2(xy+yz+xz)>=0
即
2(x²+y²+z²)>=2(xy+yz+xz)
3(x²+y²+z²)>=x²+y²+z²+2(xy+yz+xz)=(x+y+z)²
所以
x*x+y*y+z*z>=(x+y+z)²/3=1/3
(2)先给你第一问,我在想第二问