解:由于:cosa=1/7,且0则:sina>0则:sina=√[1-cos�0�5a]=4√3/7
则:tana=sina/cosa=4√3
则:tan2a=2tana/[1-tan�0�5a]
=2*4√3/(1-48)
=-8√3/47.
解:
已知cosa=1/7,cos(a-b)=13/14
0<b<a<π/2
则0<a-b<π/2
所以sina=√[1-(1/7)²]=4√3/7
sin(a-b)=√[1-(13/14)²]=3√3/14
所以tan2a=sin2a/cos2a=2sinacosa/(cos²a-sin²a)
=2*(4√3/7)*(1/7)/[(1/7)²-(4√3/7)²]
=-8√3/47
cosb=cos[a-(a-b)]=cosacos(a-b)+sinasin(a-b)
=(1/7)*(13/14)+(4√3/7)*(3√3/14)
=1/2
所以b=π/3