(1)
a=(cosα,sinα)(0≦α<2π),b=(-1/2,√3/2),a与b不共线
(a+b)(a-b)=a^2-b^2=|a|^2-|b|^2=(cosα)^2+(sinα)^2-(1/4+3/4)
=1-1=0
所以:向量a+b与a-b垂直
(2)
向量√3a+b与a-√3b的模相等
(√3a+b)^2=(a-√3b)^2
3a^2+b^2+2√3ab=a^2+3*b^2-2√3ab
2a^2-2b^2+4√3ab=0
a^2-b^2+2√3ab=0
(cosα)^2+(sinα)^2-1+2√3(-1/2cosα+√3/2sinα)=0
-1/2cosα+√3/2sinα=0
tanα=√3/3
α=π/6或7π/6