解:(1) ∠BOC=180°-(∠1+∠2)=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2=90°+20°=110°
(2)∠B'O'C'=180°-(∠1+∠2)=180°-(∠DB'C'+∠EC'B')/2=180°-(180°-∠A'B'C'+180°-∠A'C'B')/2=(∠A'B'C'+∠A'C'B')/2=(180°-∠A')/2=70°
(3)∠BOC+∠B'O'C'=180°
即∠BOC与∠B'O'C'互补
若∠A=∠A'=n°,∠BOC与∠B'O'C'之间仍然具有这样的关系
移动右边三角形使A', B', C'分别与A, B, C重合
∵∠OBC+∠OCB=(∠ABC+∠ACB)/2
∠O'BC+∠O'CB=(∠DBC+∠ECB)/2
∴∠OBC+∠OCB+∠O'BC+∠O'CB=(∠ABC+∠ACB+∠DBC+∠DCB)/2
又∠ABC+∠DBC=180, ∠ACB+∠ECB=180°
∴∠OBC+∠OCB+∠O'BC+∠O'CB=180°
在四边形OBO'C中,内角和为360°
∴∠BOC+∠BO'C=180°
即∠BOC+∠B'O'C'=180°
(1)因为BD,CD分别是,∠ABC,∠ACB的角平分线,∠ABC=40°,∠ACB=60°,
所以∠BDC=180°-(40°+60°)/2=130°
(2)∠BDC=180°-110°/2=125°
(3)∠A=50°,所以∠ABC+∠ACB=180°-50°=130°,则)∠BDC=180°-130°/2=115°
(4)∠A=n°,∠ABC+∠ACB=180°-n°,则)∠BDC=180°-(180°-n°)/2=90°+n°/2
(5)∠CBE=180°-∠ABC ∠BCF=180°-∠ACB ∠CBE+∠BCF=360°-∠ABC -∠ACB
∠CBE和∠BCF的平分线相交于点O
所以∠COB=180°-(360°-∠ABC -∠ACB )/2=∠ABC+∠ACB-180°
∠BDC=180°-(∠ABC+∠ACB)/2 所以∠ABC+∠ACB=(180°-∠BDC)*2
所以∠COB=(180°-∠BDC)*2-180°=180°-2-∠BDC
第一空,130,第二空110,第三空,130
①130度②125度③115度④90+1/2角A