已知x(1⼀y+1⼀z)+y(1⼀x+1⼀z)+z(1⼀x+1⼀y)+3=0,且1⼀x+1⼀y+1⼀z不等于0,求x+y+z的值

数学题
2025-05-19 20:36:41
推荐回答(1个)
回答1:

x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+3
=x/y+x/z+y/x+y/z+z/x+z/y+3
=(x/y+1+z/y)+(x/z+y/z+1)+(1+y/x+y/x)
=(x+y+z)/y+(x+y+z)/z+(x+y+z)/x
=(x+y+z)(1/x+1/y+1/z)
已知x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+3=0 且1/x+1/y+1/z≠0
那么(x+y+z)(1/x+1/y+1/z)=0
即(x+y+z)=0
为解