证明:
用综合法吧。
∵ (a-c)*[1/(a-b)+1/(b-c)]
=[(a-b)+(b-c)]*[1/(a-b)+1/(b-c)]
=1+(a-b)/(b-c)+(b-c)/(a-b)+1
=2+(a-b)/(b-c)+(b-c)/(a-b)
∵ a>b>c,∴ a-b>0,b-c>0,利用均值不等式
≥2+2√{[(a-b)/(b-c)]*(b-c)/(a-b)]}
=4
∴ 原不等式成立。
证明:1/(a-b)+1/(b-c)>=4/(a-c)←
(a-c)/(a-b)+(a-c)/(b-c)>=4←
[(a-b)+(b-c)]/(a-b)+[(a-b)+(b-c)]/(b-c)>=4←
1+(b-c)/(a-b)+(a-b)/(b-c)+1>=4←
(b-c)/(a-b)+(a-b)/(b-c)>=2←
∵a>b>c∴a-b>0 b-c>0
∴(b-c)/(a-b)+(a-b)/(b-c)>=2√[(b-c)/(a-b)×(a-b)/(b-c)]=2
得证
1/(a-b)+1/(b-c)>=2*(2/(a-b+b-c))=4/(a-c)
(对于正实数,算术平均大于等于倒数平均)
证明如下:
(x+y)/2-2/(1/x+1/y)
=(x+y)/2-2xy/(x+y)
=((x+y)^2-4xy)/(2(x+y))
=(x-y)^2/(2(x+y))>=0