求圆的不定积分。

2025-05-23 01:35:14
推荐回答(1个)
回答1:

x² + y² = r²
y = ± √(r² - x²)
则半圆的面积
Area = ∫(- r→r) √(r² - x²) dx
换元x = rsinθ,dx = rcosθ dθ
Area = ∫(- π/2→π/2) √(r² - r²sin²θ) • rcosθ dθ
= 2∫(0→π/2) (r²cos²θ) dθ
= 2r²∫(0→π/2) (1 + cos2θ)/2 dθ
= r² • [θ + (1/2)sin2θ] |(0→π/2)
= (πr²)/2
所以圆面积 = πr²

半圆的体积 = πr²h
Volume = π∫(0→r) [√(r² - x²)]² dx,绕x轴旋转
= π∫(0→r) (r² - x²) dx
= π • [r²x - x³/3] |(0→r)
= π(r³ - r³/3) = 2πr³/3
所以圆体积 = 4πr³/3