∠1=∠EBA+∠BAE ∠BAC=∠FAC+∠BAE ∠1=∠BAC
∠EBA=∠FAC
AB=CA
∠2=∠FAC+∠ACF ∠BAC=∠FAC+∠BAE ∠2=∠BAC
∠BAE=∠FCA
△ABE全等△CAF
S(ABE)+S(CDF)=S(CAF)+S(CDF)
=S(ADC)
CD=2BD, CD=2BC/3
S(ADC)=2S(ABC)/3=2*9/3=6
S(ABE)+S(CDF)=6
面积和为6
证明AFC与AEB全等即可
条件:∠AFC=∠AEB
AB=AC
∠BAD=∠ACF
∠BAD=∠ACF的证明:
∠2=∠FAC+∠ACF
又∠2=∠BAC,,∠BAC=∠BAD+∠DAC
则∠FAC+∠ACF=∠BAD+∠DAC
故∠BAD=∠ACF