在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2则CD的长为多少

2025-05-22 01:00:45
推荐回答(2个)
回答1:

根据你的描述。1、E点在BA延长线上,D在BC的延长线上;2、D在CB的延长线上,E在AB延长线上。
解:1、过E作EF垂直CD于F,在Rt三角形BEF中,由正三角形ABC知BC=1,角B=60度,BE=AB+AE=3,所以BF=1.5,所以CF=BF-BC=0.5,又因DE=EC,则DF=CF,
所以CD=CF+DF=1.
2、可推导三角形BDE为正三角形,BD=BE,因为BE=AE-AB=1,所以CD=BC+BD=2

回答2:

CD的长是3。
因为△ABC是等边三角形,所以AB=BC=AC=1
BE=AE-AB=1
所以BE=BC,所以∠BEC=∠BCE
又因为ED=EC,所以∠BDE=∠BCE
所以∠BDE=∠BEC
∠DBE=∠ABC=∠A=60度
ED=EC
根据角角边△BDE=△AEC,所以BD=AE=2,所以CD=BD+BC=3