证明: 由已知设α1,α2是A的分别属于不同特征值λ1,λ2的特征向量
则 Aα1=λ1α1,Aα2=λ2α2, 且λ1≠λ2.
假如α1+α2是A的属于特征向量λ的特征向量
则 A(α1+α2)=λ(α1+α2).
所以 λ1α1+λ2α2 = λ(α1+α2).
所以 (λ-λ1)α1+(λ-λ2)α2=0.
因为A的属于不同特征值的特征向量线性无关
所以 λ-λ1=0,λ-λ2=0
所以 λ=λ1=λ2, 与λ1≠λ2矛盾.
反证法,若是它的特征向量,则用定义就可以证出
这上面没会输啊,三个定义式代进去,就可以证明了。用这条a1和a2是不同特征值的特征向量,所以其系数全为0时他们的和才是0.