证:设∠B= a
∵平行四边形ABCD,AM⊥BC,AN⊥CD
∴∠B=∠D=a,∠BAD=180°-a,∠BAM=∠DAN=90°-a
S□ABCD=AM × BC= AN × CD,AB=CD,AD=BC
∴∠MAN=∠BAD- ∠BAM-∠DAN=a=∠D
AM / CD=AN / BC
又∵AD=BC
∴ AM / CD=AN / AD
∴在△AMN和△DCA 中,AM / CD=AN / AD,∠MAN=∠D
∴△AMN∽△DCA
∴MN / CA = AM / DC
又∵AB=CD
∴MN / CA = AM / AB 即 AM:AB=MN:AC,得证
M,N 为垂足,则四点AMCN共圆 则∠ANM=∠ACB
又∠B=∠D
∠DAN+∠D=90°
∠DAN+∠MAN=90°
∴∠B=∠D =∠MAN
综上 得△ABC ∽△AMN
即得到AM:AB=MN:AC