解答:(1)证明:取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,
又OP∩OB=O,∴AD⊥平面POB,
∵BC∥AD,∴BC⊥平面POB,
∵PB?平面POB,∴BC⊥PB,即∠PBC=90°.
(2)解:如图,以O为坐标原点,建立空间直角坐标系O-xyz,则A(1,0,0),B(0,
,0),C(-1,
3
,0),
3
由PO=BO=
,PB=3,得∠POB=120°,∴∠POz=30°,∴P(0,-
3
,
3
2
),3 2
则
=(-1,AB
,0),
3
=(-1,0,0),BC
=(0,PB
,-3
3
2
),3 2
设平面PBC的法向量为
=(x,y,z),则n
,取z=
?x=0
y?3
3
2
z=03 2
,则
3
=(0,1,n
),
3
设直线AB与平面PBC所成的角为θ,则sinθ=|cos<
,AB
>|=n
.
3
4