1⼀(x^2+ 1)^2的 原函数是什么?

2025-02-20 01:01:47
推荐回答(2个)
回答1:

∫1/(x²+1)²dx
令x=tant,dx=sec²tdt
t=arctanx,sint=x/√1+x²,cost=1/√1+x²
所以
原式=∫1/sec^4t*sec²tdt
=∫cos²tdt
=1/2∫(1+cos2t)dt
=1/2t+1/4sin2t+c
=1/2t+1/2sintcost+c
=1/2arctanx+1/2*x/(1+x²)+c
=1/2arctanx+x/[2(1+x²)]+c

回答2:

令x=tant dx=sec^2tdt
∫dx/(x^2+1)^2
=∫sec^2tdt/(sec^4t)
=∫cos^2tdt
=1/2*∫1+cos2t dt
=1/2*(t+1/2*sin2t)+C
=t/2+(sin2t)/4+C
=(arctanx)/2+[sin(2arctanx)]/4+C