(1)证明:连接BD交AC于O,
∵底面ABCD是矩形,∴O为BD中点,连接OE.
△PBD中,OE∥PB.
∵PB?面ACE,OE?面ACE,OE∥PB,
∴PB∥面ACE …4′
(2)解:PB∥面ACE,Q∈PB
∴Q在PB上任意一处,VQ-ACE=VB-ACE=VE-ABC…6′
∵ABCD是矩形,AB=4,BC=3,∴△ABC的面积S=
×4×3=6,…8′1 2
∵PD⊥面ABCD,PD=CD=4,E为PD中点,
∴ED⊥面ABCD,ED=2,…10′
∴VQ-ACE=VB-ACE=VE-ABC=
×6×2=4.…12′1 3