sinx-2cosx=0
所以
tanx=2
所以
sin2x-cos2x/1+sin^2x
=(sin2x-cos2x)/[1+(1-cos2x)/2]
=2(sin2x-cos2x)/(3-cos2x)
=2(2tanx/(1+tan²x)-(1-tan²x)/(1+tan²x))/(3-(1-tan²x)/(1+tan²x))
=2(4/5+3/5)/(3+3/5)
=28/(18)
=14/9
sinx-2cosx=0 可得:sinx=2cosx
(sin2x-cos2x)/(1+sin²x)
=(2sinxcosx-cos²x+sin²x)/(sin²x+cos²x+sin²x)
=(4cos²x-cos²x+4cos²x)/(4cos²x+cos²x+4cos²x)
=7cos²x/9cos²x
=7/9