解:利用代入法求解。
因为x=5+2根号下6,y=5-2根号下6,
所以根号x平方+XY+Y的平方=根号[(5+2根号下6)^2+(5+2根号下6)(5-2根号下6)+(5-2根号下6)^2]
=5^2+2*5*(5+2根号下6)+(2根号下6)^2+5^2-(2根号下6)^2+5^2-2*5*(5-2根号下6)+(2根号下6)^2
=25+24+25-24+25+24
=99
x=5+2√6,y=5-2√6
√{x²+xy+y²} = √{(x+y)²-xy} = √{(5+2√6+5-2√6)²-(5+2√6)(5-2√6)} = √{10²-1} = 3√11