Sn=2n^2+n+3
S(n-1)=2(n-1)^2+N-1+3
相减得an=4n-1
所以a10=39
解:当n≥1时,则
s﹙n-1﹚=2﹙n-1﹚²+﹙n-1﹚+3
=2﹙n²-2n+1﹚+n-1+3
=2n²-4n+2+n-1+3
=2n²-3n+4
∴an=sn- s﹙n-1﹚
=2n²+n+3-﹙2n²-3n+4﹚
=2n²+n+3-2n²+3n-4
=4n-1
当n=10时
则a10=4×10-1
=39
a1=s1=2+1+3=6
an=sn-s(n-1)=2n^2+n+3-[2(n-1)^2+(n-1)+3]
=5n-1
a6=5*6-1=29
a10 = s10 - s9
s10 = 2*10*10+10+3 = 213
s9 = 2*9*9+9+3 = 174
a10 = 213 - 174 = 39
因为Sn=2n*n+n+3
S(n+1)=2(n+1)(n+1)+(n+1)+3
所以S(n+1)-Sn=A(n+1)=4n+3 其中 n>=0
即 An=4n-1 其中 n>=1
所以 A10=39