z²<0,则z是纯虚数,则:a²-1=0且a²-3a+2≠0解得:a=-1
解z²<0,即z²是实数即z平方后的虚部为0即2(a²-1)*(a²-3a+2)i=0即a=1,或a=-1或a=2当a=1 时z=0 与z²<0矛盾当a=-1 时z=4i 此时z²=-16<0当a=2 时z=3 与z²<0矛盾即a=-1