已知数列{an}的前n项和Sn=n^2.求Tn=1⼀a1a2+1⼀a2a3+……+1⼀ana(n+1)

2025-05-14 23:54:29
推荐回答(2个)
回答1:

Sn = a1+a2+..+an
Sn =n^2 (1)
S(n-1) = (n-1)^2 (2)
(1) -(2)
an = 2n-1
consider
1/(ana(n+1))
=1/[(2n-1)(2n+1)]
=(1/2)[ 1/(2n-1) -1/(2n+1)]

Tn=1/(a1a2)+1/(a2a3) +..+1/(ana(n+1))
=(1/2)[ (1-1/3) + (1/3-1/5) +...+(1/(2n-1)-1/(2n+1) ]
= (1/2)(1- 1/(2n+1)]
= n/(2n+1)

回答2:

Sn = a1+a2+..+an
Sn =n^2 S(n-1) = (n-1)^2 (1) -(2)
an = 2n-1
consider
1/(ana(n+1))
=1/[(2n-1)(2n+1)]
=(1/2)[ 1/(2n-1) -1/(2n+1)]

Tn = n/(2n+1)