等差数列的题

已知数列{an}为等差数列,且a1+a7+a13=4pai,则tan(a2+a12)=?
2025-05-11 01:50:47
推荐回答(4个)
回答1:

由等差数列的性质,a1+a13=2a7,又a1+a7+a13=4pai,所以3a7=4pai,所以a7=4/3pai
同样,a2+a12=2a7=8/3pai
从而,tan(a2+a12)=tan(8/3pai)=tan(2/3pai)=负的根号3

回答2:

a1+a7+a13=3a7=4π
tan(a2+a12)=tan(2a7)=tan(8π/3)=-根号3

回答3:

a1+a7+a13=4π,
则a7=4π /3 ,
tan(a2+a12)=tan2a7=tan8π/ 3
负根号3

回答4:

a1+a7+a13=3a7
a2+a12=2a7
tan(a2+a12)=tan(8/3π)=-根号3