已知数列{an}中,a1=1,前n项和Sn=(n⼀3+2⼀3) an,求通项公式

Sn是(n⼀3+2⼀3)乘以 an
2025-05-20 12:20:08
推荐回答(3个)
回答1:

当n大于等于2时
S(n-1) = (n/3+1/3)*a(n-1)
把Sn - S(n-1)得
an = (n/3+2/3)*an - (n/3+1/3)*a(n-1)
整理得
an/a(n-1) = (n+1)/(n-1)
a2/a1 * a3/a2 * a4/a3 * ... * a(n-1)/a(n-2) * an/a(n-1)
an/a1 = 3/1 * 4/2 * 5/3 * ... * n/(n-2) * (n+1)/(n-1) = [n*(n+1)]/2
因为a1=1,所以an=[n*(n+1)]/2

回答2:

Sn=(n/3+2/3) an ①
Sn-1=((n-1)/3+2/3) an-1 ②
①-②得
Sn-Sn-1=(n/3+2/3) an -((n-1)/3+2/3) an-1
又Sn-Sn-1=an则
an=(n/3+2/3) an -((n-1)/3+2/3) an-1
化简得
an/an-1=(n+1)/(n-1)

an=(n+1)/(n-1)*n/(n-2)*(n-1)/(n-3)....2/1*a1=(n+1)n/2*a1=(n+1)n/2

回答3:

0