当n大于等于2时
S(n-1) = (n/3+1/3)*a(n-1)
把Sn - S(n-1)得
an = (n/3+2/3)*an - (n/3+1/3)*a(n-1)
整理得
an/a(n-1) = (n+1)/(n-1)
a2/a1 * a3/a2 * a4/a3 * ... * a(n-1)/a(n-2) * an/a(n-1)
an/a1 = 3/1 * 4/2 * 5/3 * ... * n/(n-2) * (n+1)/(n-1) = [n*(n+1)]/2
因为a1=1,所以an=[n*(n+1)]/2
Sn=(n/3+2/3) an ①
Sn-1=((n-1)/3+2/3) an-1 ②
①-②得
Sn-Sn-1=(n/3+2/3) an -((n-1)/3+2/3) an-1
又Sn-Sn-1=an则
an=(n/3+2/3) an -((n-1)/3+2/3) an-1
化简得
an/an-1=(n+1)/(n-1)
an=(n+1)/(n-1)*n/(n-2)*(n-1)/(n-3)....2/1*a1=(n+1)n/2*a1=(n+1)n/2
0