各位大神~麻烦过程详细点拜托啦

2025-05-20 02:25:48
推荐回答(1个)
回答1:

y=1+xe^xy
x=0,y=1
两边求导
y'=e^xy+xe^xy(y+xy')
y'=e^xy(1+xy+x²y')
y'=e^xy(1+xy)+e^xy * x²y'
y'(1-e^xy *x²)=e^xy(1+xy)
y'=e^xy(1+xy)/(1-e^xy *x²)
y'|x=0 = 1
y'' ={ [1- x²*e^(xy)] [1+ (1+x)(xy'+y) ] e^(xy) - (1+x)e^(xy)*[ -2x+ x²(xy'+y)]e^(xy) } /[1- x²*e^(xy)]²
y''|x=0 =(2 -0)/1 =2